PRMT1-mediated methylation of MICU1 determines the UCP2/3 dependency of mitochondrial Ca2+ uptake in immortalized cells
نویسندگان
چکیده
Recent studies revealed that mitochondrial Ca(2+) channels, which control energy flow, cell signalling and death, are macromolecular complexes that basically consist of the pore-forming mitochondrial Ca(2+) uniporter (MCU) protein, the essential MCU regulator (EMRE), and the mitochondrial Ca(2+) uptake 1 (MICU1). MICU1 is a regulatory subunit that shields mitochondria from Ca(2+) overload. Before the identification of these core elements, the novel uncoupling proteins 2 and 3 (UCP2/3) have been shown to be fundamental for mitochondrial Ca(2+) uptake. Here we clarify the molecular mechanism that determines the UCP2/3 dependency of mitochondrial Ca(2+) uptake. Our data demonstrate that mitochondrial Ca(2+) uptake is controlled by protein arginine methyl transferase 1 (PRMT1) that asymmetrically methylates MICU1, resulting in decreased Ca(2+) sensitivity. UCP2/3 normalize Ca(2+) sensitivity of methylated MICU1 and, thus, re-establish mitochondrial Ca(2+) uptake activity. These data provide novel insights in the complex regulation of the mitochondrial Ca(2+) uniporter by PRMT1 and UCP2/3.
منابع مشابه
UCP2 and PRMT1 are key prognostic markers for lung carcinoma patients
Cancer cells have developed unique strategies to meet their high energy demand. Therefore, they have established a setting of Ca2+-triggered high mitochondrial activity. But mitochondrial Ca2+ uptake has to be strictly controlled to avoid mitochondrial Ca2+ overload that would cause apoptotic cell death. Methylation by protein arginine methyl transferase 1 (PRMT1) desensitizes the mitochondrial...
متن کاملLeucine Zipper EF Hand-containing Transmembrane Protein 1 (Letm1) and Uncoupling Proteins 2 and 3 (UCP2/3) Contribute to Two Distinct Mitochondrial Ca2+ Uptake Pathways*
Cytosolic Ca(2+) signals are transferred into mitochondria over a huge concentration range. In our recent work we described uncoupling proteins 2 and 3 (UCP2/3) to be fundamental for mitochondrial uptake of high Ca(2+) domains in mitochondria-ER junctions. On the other hand, the leucine zipper EF hand-containing transmembrane protein 1 (Letm1) was identified as a mitochondrial Ca(2+)/H(+) antip...
متن کاملAntagonistic Regulation of Parvalbumin Expression and Mitochondrial Calcium Handling Capacity in Renal Epithelial Cells
Parvalbumin (PV) is a cytosolic Ca2+-binding protein acting as a slow-onset Ca2+ buffer modulating the shape of Ca2+ transients in fast-twitch muscles and a subpopulation of neurons. PV is also expressed in non-excitable cells including distal convoluted tubule (DCT) cells of the kidney, where it might act as an intracellular Ca2+ shuttle facilitating transcellular Ca2+ resorption. In excitable...
متن کاملTissue-Specific Mitochondrial Decoding of Cytoplasmic Ca2+ Signals Is Controlled by the Stoichiometry of MICU1/2 and MCU
Mitochondrial Ca2+ uptake through the Ca2+ uniporter supports cell functions, including oxidative metabolism, while meeting tissue-specific calcium signaling patterns and energy needs. The molecular mechanisms underlying tissue-specific control of the uniporter are unknown. Here, we investigated a possible role for tissue-specific stoichiometry between the Ca2+-sensing regulators (MICUs) and po...
متن کاملBy Regulating Mitochondrial Ca2+-Uptake UCP2 Modulates Intracellular Ca2+
INTRODUCTION The possible role of UCP2 in modulating mitochondrial Ca2+-uptake (mCa2+-uptake) via the mitochondrial calcium uniporter (MCU) is highly controversial. METHODS Thus, we analyzed mCa2+-uptake in isolated cardiac mitochondria, MCU single-channel activity in cardiac mitoplasts, dual Ca2+-transients from mitochondrial ((Ca2+)m) and intracellular compartment ((Ca2+)c) in the whole-cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016